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ARTICLE INFO ABSTRACT

Keywords: Low-loss electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope probes the
EELS valence electron density and relevant optoelectronic properties such as band gap energies and other band
Kramers-Kronig analysis structure transitions. The measured spectra can be formulated in a dielectric theory framework, comparable to
Opto-electronic properties optical spectroscopies and ab-initio simulations. Moreover, Kramers-Kronig analysis (KKA), an inverse algorithm
based on the same name relations, can be employed for the retrieval of the complex dielectric function. However,
spurious contributions traditionally not considered in this framework typically impact low-loss EELS modifying
the spectral shapes and precluding the correct measurement and retrieval of the dielectric information. A re-
lativistic KKA algorithm is able to account for the bulk and surface radiative-loss contributions to low-loss EELS,
revealing the correct dielectric properties. Using a synthetic low-loss EELS model, we propose some modifica-
tions on the naive implementation of this algorithm that broadens its range of application. The robustness of the
algorithm is improved by regularization, applying previous knowledge about the shape and smoothness of the
correction term. Additionally, our efficient numerical integration methodology allows processing hyperspectral
datasets in a reasonable amount of time. Harnessing these abilities, we show how simultaneous relativistic KKA

processing of several spectra can share information to produce an improved result.

1. Introduction

Low-loss electron energy loss spectroscopy (EELS) in the scanning
transmission electron microscope (STEM) combines the ability to
measure dielectric properties with ultimate spatial resolution. This
ability complements other experimental and theoretical techniques
being applied in the characterization of the optoelectronic properties of
materials. For instance, ab-initio simulation codes based on density
functional theory (DFT) are able to calculate related quantities with
varying degrees of precision [1-3]. Moreover, optical spectroscopy
techniques measure spatial averages of some of the (optical) transitions
observed in EELS [4]. Generally speaking, the theoretical framework in
which these techniques are formulated has one relevant quantity in
common; a complex dielectric function (CDF), that describes the dis-
placement of bound charges in the material when exposed to exterior
electric fields. Being able to measure or calculate this quantity is re-
levant in many fields, for instance to the characterization of semi-
conductor materials [5,6]. In this sense, a long standing aim has been to
use low-loss EELS to perform standard-free measurement of the di-
electric properties of materials ranging from the optical to the ultra-
violet (UV) frequency regime, without having to revert to synchrotron
radiation [7-9].

* Corresponding author.

The study of the dielectric response in low-loss EELS is character-
ized by the choice of a semi-classical or relativistic framework. In the
semi-classical formulation, closed formulas describe the energy-loss
spectrum in terms of the CDF [10]. Together with the causality prop-
erties of the dielectric response, this formulation has traditionally been
used in the Kramers—Kronig analysis (KKA) to retrieve the CDF [5,9,11].
In most cases a relativistic framework has to be considered to com-
pletely describe the low-loss EELS signal, as pointed out in early theo-
retical and experimental work [7,12,13]. Bulk and surface radiative-
loss modes are only explained in this relativistic formulation. It is
possible that the generally poor energy resolution of conventional
transmission electron microscopes (TEMs) equipped for EELS made the
study of these modes less relevant and prioritized surface-losses that
impact the spectra at a higher energy-loss range.

The interest in the relativistic formulation increased with the gen-
eral availability of sub-eV resolution in STEM-EELS. Relevant (opto-)
electronic properties, such as the band gap energy in semiconductor
materials, can in principle be measured by modern low-loss EELS sys-
tems [5,14]. However, under common experimental conditions, spec-
tral features indicating the band gap energy onset may be concealed by
bulk radiative loss contributions (i.e. Cerenkov-losses) [15], making the
interpretation of the data problematic. Some experimental methods

E-mail addresses: aeljarrat@physik.hu-berlin.de, aeljarrat@el.ub.edu (A. Eljarrat).

https://doi.org/10.1016/j.ultramic.2019.112825

Received 15 February 2019; Received in revised form 15 July 2019; Accepted 26 July 2019

Available online 01 August 2019
0304-3991/ © 2019 Elsevier B.V. All rights reserved.


http://www.sciencedirect.com/science/journal/03043991
https://www.elsevier.com/locate/ultramic
https://doi.org/10.1016/j.ultramic.2019.112825
https://doi.org/10.1016/j.ultramic.2019.112825
mailto:aeljarrat@physik.hu-berlin.de
mailto:aeljarrat@el.ub.edu
https://doi.org/10.1016/j.ultramic.2019.112825
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ultramic.2019.112825&domain=pdf

A. Eljarrat and C.T. Koch

have been proposed to circumvent or reduce the impact of these
spurious contributions and allow the direct observation of the band gap.
Among these, using lower electron beam energies and thinner samples
can help in the overall reduction of the intensity of bulk radiative losses
[16]. Other experimental methods attempt to suppress this contribution
by avoiding the forward scattered electrons, either by using a dedicated
experimental setup [17,18,18-20]; or by subtracting spectra acquired
with different collection apertures [21].

Since these methods do not guarantee a complete correction of the
relativistic and surface effects and are not always feasible, off-line
analysis methods must be considered as well. Their theoretical frame-
work should include the relativistic (bulk and surface) contributions to
low-loss EELS, and provide a way to extract the underlying material
dependent spectral features from the experimental data. It is, in prin-
ciple, possible to introduce a calculation of the relativistic double dif-
ferential cross section (DDCS) into the KKA framework in order to
calculate such off-line correction [19]. In the classical KKA framework,
the analytically integrable semi-classical DDCS model is used; produ-
cing a closed expression for the surface correction. Conversely, the re-
lativistic DDCS has to be integrated over a mesh of scattering angles
using numerical methods. The computations involved are more costly
and, as shown below, there are several pitfalls in this process. Some
authors have proposed methods to deal with these issues, e.g. by using
simple models of the CDF in Silicon [22], or more recently by proposing
more sophisticated integration methods for the relativistic DDCS [23].

Our study of this problem begins by describing a framework for the
simulation of realistic low-loss EELS synthetic data, using an analytical
model for the dielectric function of a material characterized by a band
gap and bulk plasmon. This model is useful also to study the forward
simulation of spectra from dielectric data, which is an integral part of
the KKA algorithm.

This study is the basis of our implementation of the relativistic KKA
(rKKA) algorithm, that is designed with reliability and speed in mind. In
our version of this algorithm, the iteratively-updated relativistic cor-
rection term is obtained using a single-step numerical integration of a
special relativistic DDCS. Since this computation is costly and not free
of errors, several numerical integration methods are implemented in
our algorithm and a comparison in terms of their cost and performance
is made. Additionally, parallel computation improves the processing
time for hyperspectral datasets.

Some instabilities and artifacts affecting the results obtained from
the rKKA algorithm are found. Our tests show that these issues are
mostly related to the inaccuracy of the initial guess for the dielectric
function and the response of the algorithm to noise in the input spectra.
The robustness of our rKKA algorithm against this issues is improved by
implementing a simple regularization scheme of the correction term by
bounding and smoothing.

Finally, a novel methodology is proposed, that integrates the in-
formation from the analysis of hyperspectral datasets in which several
spectra from the same material are included. In a first proof-of-concept,
we show that the estimate of the CDF made at different thicknesses can
be averaged, further improving the robustness of the rKKA algorithm.

The software developed for this work is implemented in Python
using the Hyperspy toolbox [24], and can be obtained on github [25].
The use of fast numerical integration methods and parallel computing
makes it generally useful for the simulation and rKKA of EELS spectra.
The rKKA has been tested both on synthetic and experimental data
(experimental results are presented in a different paper).

2. Materials and methods
2.1. Dielectric response model
For linear continuous media, the low-loss EELS signal from a thin-

film sample is completely described by the dielectric tensor,
¢ = g;(q, E); where q is the scattering vector and E is the energy-loss;
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and a few experiment-dependent parameters [9]. From a macroscopic
point of view, this is a complex tensor describing polarization of the
material in response to an external electric field. For a microscopic
description of the polarization induced by the electron beam, one has to
consider a model of the applied perturbation and the bound charge
density together with some approximations. Let us consider the special
case of small-angle scattering, dictated by the (longitudinal) Coulomb
force and Bloch wave-functions in isotropic media. In this case, the q
dependence and the tensor nature are dropped and the dielectric re-
sponse is completely described by the CDF, ¢ = £(E).

This formalism is equivalent to applying the random-phase ap-
proximation (RPA), that is employed in DFT to simulate dielectric
properties; or to the Lindhard model [26], at the core of many CDF
models used to fit optical signals. It is an independent particle ap-
proximation and in consequence, many-body effects such as spin ex-
change or Coulomb correlation are not included. However, this simple
description is sufficient for the current work, which aims at providing
phenomenological insight into the behavior of low-loss EELS in terms of
optical transitions in the presence of relativistic effects.

In this framework, a dielectric response model that is useful for the
simulation and KKA of low-loss EELS can be obtained considering the
electric susceptibility, y = ¢ — 1. This quantity can be theoretically
obtained by the product of appropriate transition matrix elements and
the valence joint density of states (JDOS) [11]. Such models of the
susceptibility are useful since this quantity is additive and directly re-
lated to the imaginary part of the CDF [9]. In other words, the ima-
ginary part of the CDF can be described as the sum of individual sus-
ceptibilities, x;, for each separate contribution. The real part can be
obtained from the imaginary part using the appropriate Kramer-
s-Kronig transformation (KKT);

e=1+KKT[3()] +i3@E); 3@ = Y% )

For many materials, the main contributions to low-loss spectra come
from single electron transitions and plasmon excitations. Among the
former, the band gap energy onset is perhaps the most relevant feature
in semiconductor and dielectric materials. To model a semiconductor
featuring a direct band gap transition, the Tauc JDOS model is a natural
choice for the imaginary part of the susceptibility [4],

2E-E
I0g) = TH(E - Ep) o)

Where E, is the band gap energy, f is proportional to the transition
oscillator strength and H is the Heaviside step function. For the plasma
oscillation, perhaps the simplest model is a Lorenz oscillator. A hybrid
Tauc-Lorenz (TL) model is used in the analysis of ellipsometric data
[27], in order to account for the shift of the plasmon resonance induced
by the band gap transition,

f7 EpTp(E — Ep)?
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Where Ejp is the plasmon energy, ['p is the plasmon width, and fp is
again the resonance strength. The dielectric function model used in the
present work is obtained by adding the two susceptibilities presented
above; J(er.) = ¥ + Xy Fig. 1a portraits these models for E,= 1, 3 and
5 eV, in gray-filled areas. Additionally, the absorption is null below the
band gap and the absorption decays with an inverse cubic dependence
or faster for large energy-losses.

Note that the full complex ey, (not shown in the figure) is needed for
the dielectric model of EELS simulations; this is obtained using Eq. 1.
Because of this formulation, the er;, model agrees perfectly with the
Kramers-Kronig relations, which constitute the basic property that
enables the KKA. We confirm this fact by transforming back and forth
the real and imaginary parts of the er; models, and also simulating
semi-classical low-loss EELS spectra and processing them via the KKA.
In both cases, the original and retrieved dielectric functions agree,
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indicating that the Kramers—Kronig relations hold for ery.

A word of caution: our tests using analytical models for the CDF, e.g.
the Drude model [9], showed that for some parameters small dis-
crepancies between the analytically calculated real and imaginary parts
and their respective KKT can appear. In these tests, the KKT was im-
plemented both in reciprocal and real space using FFT and MacLaurin
method, respectively. Although small, these discrepancies are somehow
transferred to the calculated spectra even if a broad energy range is
considered. In those cases verifying the validity of KKA is hampered by
the fact that agreement between the original and recovered CDF is not
guaranteed. Using Eq. 1 to generate a CDF model that agrees with KKT
from only the imaginary part is also a solution to this issue.

2.2. Dielectric formulation of EELS

Single scattering distribution (SSD) energy-loss spectra, S(E), can be
calculated from the different e7; models (see for instance Fig. 1). Dis-
regarding plural scattering, these S(E) emulate experimentally obtained
low-loss EELS for thin samples. These calculations are performed using
a formulation of EELS that links dielectric theory and the observed low-
loss spectra. This dielectric formulation of EELS is based on Maxwell’s
equations, solved for the charge distribution in the bulk and at the
boundaries of the object. Since the potential can generally be separated
into bulk and boundary reflection terms, we obtain separate expressions
for the bulk and surface DDCS [28]. The total spectrum can be found by
integrating these DDCS and adding each contribution, S = S, + S;;

emu.x
Sp.s(E) = j()' Dy4(6, E)sin(6)do @

Where D, s and S s are the bulk and surface DDCS and energy-loss
spectra, respectively; and 0 is the scattering angle. For both bulk and
surface modes, depending if retardation effects are considered in the
DDCS models, semi-classical and relativistic contributions to the total
spectrum can be identified.

For the semi-classical case retardation effects are disregarded and
analytical integration of the DDCS is possible [10]. Then, closed for-
mulas that model S(E) as a function of ¢(E) can be obtained, taking into
account only a few parameters; the incoming beam energy, Eo; the
transversed material thickness, t; and the scattering angle cut-off, 6.
In this formulation the bulk term is proportional to the inverse of the
dielectric function multiplied by a known angular integration term,

Mln[l + (Bmar/Op)?]

SELF (Y =
b (B) a0 mov? (5)

Where I, is the zero-loss intensity, ao is the Bohr radius, my is the
electron rest mass, v is the electron speed and 6 = E/(ymyv?) is the
characteristic scattering angle. Moreover, J(—1/¢) is also called the
energy-loss function (ELF). This ELF produces a contribution that has a
fixed shape given by Eq. 5 and scales linearly with thickness. For
samples with thickness above a few tens of nm this contribution always
dominates S(E). Examples can be found in Fig. 1, where the spectra in
panel (b) correspond to J(—1/err).

However, a mostly thickness independent surface-loss term from the
sample boundaries always exists. A closed-form expression can be
provided for this term but will not be reproduced here, the reader is
referred elsewhere [11]. The surface contribution modifies the spectral
shape, mainly by adding an additional surface-plasmon peak that can
be observed and sometimes dominates in very thin specimens. Ad-
ditionally, S,(E) features a region of negative intensity, representing a
reduction of the EELS signal.

A fully relativistic description (i.e. including retardation effects) has
to be considered when the speed of the fast electrons surpasses the
phase velocity of light in the medium R(e) > ¢>/v> This is a common
case for the analysis of materials in the STEM, because of the high ki-
netic energy of the electron beam of typically 200 or 300 keV. In those
cases, including retardation effects into the DDCS produces a more
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intricate model with additional contributions [12],
D(6, E) =Dy + Dy=

fo 3[ LR Gl S G 90 C)]
2

w2agmov?” | e*p kopg ot

(6)

Where €* = g — ig, is the complex conjugate of the dielectric func-
tion for the specimen, and #*, idem for the surroundings (in this work,
n* =1 for vacuum). Moreover, y and ¢ are dimensionless quantities
related to momentum exchange and the A, B, and C are terms re-
presenting different surface-loss terms, by surface-plasmon and guided-
light modes. To avoid cluttering, the relatively intricate dependence of
these terms on 6, E and t is not described here, their definitions can be
found elsewhere [9], and also the original derivations [12,13].

This complexity poses a challenge to analytically solve Eq. 4, and to
our knowledge there are no available closed formulas for S(E) in the
relativistic formulation. Nevertheless, the relativistic DDCS can be in-
tegrated numerically (more below). For thin samples and comparing to
the semi-classical formulation, once the retardation effects are taken
into account this means a radical modification of the bulk and surface
terms, despite a similar dependence on specimen thickness. Bulk ra-
diative-loss excitation is now possible, emitting Cerenkov radiation
with an intensity directly proportional to the thickness. Additionally, a
variety of boundary coupling effects are observed depending on the
interfaces and surfaces of the material.

Figs. 1 b and 2 a illustrate the importance of bulk and surface, the
semi-classical model and contributions due to relativistic effects. In
these panels, the featured S(E) are calculated using the numerically
integrated full relativistic model of Eq. 6 (solid black lines) and com-
pared to the contribution of the bulk semi-relativistic term described by
Eq. 5 (in grey areas). The latter is clearly dominant, however S(E) de-
parts from the shape dictated by J(—1/er;) by an the additional peak
appearing around the [13.5, 14.0] eV energy region, which is the due to
the surface contribution. Mind that according to Eq. 6, surface con-
tributions are calculated separately showing a surface plasmon peak at
this approximate energy-loss for our er; models. Additionally, the
spectral shape in the lower energy-loss range, close to the band gap
energy onset, is radically modified; this time by Cerenkov loss. Finally,
note that a Poisson-distributed random contribution has been added to
these spectra to simulate the effect of noise accompanying the detection
process.

The relativistic DDCS corresponding to these spectra are also de-
picted in Fig. 2b. Advanced, numerical integration is employed to si-
mulate relativistic spectra, making the calculations much more de-
manding than for the semi-classical model. For this task, a DDCS mesh
with one entry for each pair of scattering angle and energy loss values is
used. From these, a numerical integration routine of choice estimates
the angle-integrated SSD. For the relativistic DDCS, the use of a loga-
rithmic mesh (log-mesh) of angles is customary, since accounting for
small-angle variations with a linear mesh would require a huge number
of entries. The reasons for this are visible in Fig. 2b: the radiative loss
modes appear mainly at very small scattering angles (6 ~ prad), all the
while, the spectra are usually acquired with relatively large cut-off
angles (Oh,.x ~ mrad), to increase counting statistics.

Numerical integration of the DDCS constitutes a slow and error-
prone process, which in this work we aim to optimize. The main reason
for this is that simple numerical integration algorithms are not useful to
integrate the DDCS which is ideally specified on an irregularly-spaced
angular log-mesh, and more sophisticated methods have to be applied.
We have performed benchmark tests of integration methods, as illu-
strated in Fig. 2a, the outcomes of which will be discussed in
Section 3.1.

2.3. Kramers—Kronig analysis

The KKA algorithm solves the inverse problem of extracting the
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Fig. 1. Comparison of the e7; model simulations and the results obtained by traditional and relativistic KKA, for t = 50 nm and E, = 1, 3, 5 eV, from top to bottom.
Panel (a) shows the imaginary part of the models (grey areas) compared to the KKA and rKKA reconstructions (finely dotted and dashed lines, respectively). Panel (b)
shows the J(—1/¢) contribution (grey areas) and the relativistic spectra (solid lines) calculated for these models. A dashed line shows the estimated J(—1/¢)
contribution, after rKKA correction S, is applied. Details of the simulation and analysis parameters are found in the text.
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Fig. 2. For the same three ¢7; models presented in Fig. 1, panel (a) is showing simulated relativistic spectra (solid lines) while their corresponding DDCS log-mesh can
be found in panel (b). Panel (a) also compares the analytical J(—1/¢) contribution to the numerical estimation obtained using cubature, the Simpson-rule and LSE

trick methods.
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EELS spectrum
normalization

Correct spurious
contributions

>

Kramers-Kronig
transform

EELS spectrum

simulation
Fig. 3. Diagram showing the individual processing steps of the KKA; starting
from the normalization of the spectrum to obtain an estimate of the ELF; the

Kramers—Kronig transformation to retrieve the CDF; and simulation of the un-
derlying model to correct the spurious (surface) contributions.

4. Output I,(E)

dielectric response of a material from experimental EELS measurements
of a specimen with finite thickness. In its original formulation, KKA uses
the expressions of the semi-classical dielectric formulation to relate the
measurements to the ELF. Additionally, surface-loss contributions are
estimated and suppressed. This process is commonly implemented as an
iterative algorithm with 4 main steps, as depicted in the diagram in
Fig. 3. These steps are explained below, without going into unnecessary
detail. The basis of this method is also explained at length and including
some application examples elsewhere [9,11].

As explained above, in the semi-classical approximation J(—1/¢) can
be obtained from normalization of Sy, the main contribution to S(E). In
order to obtain the normalization factor, knowledge of the sample
thickness is necessary. In cases where this parameter is not accurately
known (i.e. in most experiments), the Kramers—-Kronig sum-rule can be
used to obtain an estimate of the thickness. After normalization the full
dielectric function is obtained by application of the Kramers—Kronig
transform, PR(1/e) =1 — KKT[J(—1/e)], and some simple algebra.
Using fast Fourier transform (FFT), this transform can be implemented
fast and reliably in the time-domain if the EELS intensity at high en-
ergy-loss decays smoothly [29]. Using this procedure at each iteration,
i, and for each input spectrum S;, a dielectric function, ¢; is estimated.

Having reached this point (item 3 in Fig. 3), it is important to note
that even if the normalization factor is perfectly known the resulting
estimate of the ELF contains spurious contributions. In the semi-clas-
sical model, these stem from the ignored surface-loss term. Moreover,
the dielectric function retrieved after applying the Kramers—Kronig
transform is in principle also affected by these contributions. Conse-
quently, the last two steps of the KKA loop aim at measuring the
spurious contributions present in the original input signal, in order to
suppress them from the estimate of S,. Since the KKA is formulated in a
non-relativistic framework, this contribution is limited to S;.

S is estimated from the current guess of the CDF, ¢;, and using the
same parameters that were assumed for the normalization step. At each
iteration i the surface contribution, S,; of the underlying model of the
signal, L,(E) = Sp; + S;; is thus computed.

At the end of each iteration, the current estimate S;; is applied as a
correction to the original input spectrum, updating the input S;;;(E)
used for the next iteration. For obvious reasons, this correction term is
termed surface-plasmon estimation. Traditional KKA is fast and reli-
able, and usually converges after a few iterations [9]. A calculation can
be considered converged either when the underlying model and the
original spectrum are equal, i.e. when L(E)~S(E); or, alternatively,
when the correction does not change any more between iterations, i.e.
when S ; >~ S;i-1.

However, traditional KKA neglects relativistic terms and does not
perform well when these are included in the input S(E). However, these
contributions are present in real EELS spectra, and the CDF retrieved
from the application of KKA to these are known to contain errors
[15,18]. Some example results from the application of KKA to
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relativistic spectra can be examined in Fig. 1a, with dotted lines. The
correspondence between these results and the original ey, is quite poor,
especially below 10 eV and further down into the optical regime.

Relativistic Kramers—Kronig analysis

In order to extend the range of applications of the traditional KKA, it
has been proposed to use the relativistic formulation as the underlying
model for the calculation of the correction term [19]. This constitutes
the framework for a relativistic KKA (rKKA), in which a new correction
term, S.(E), contains all contributions except for the non-relativistic
bulk term, SFLF(E) = S — S, (see Egs. 5 and 6).

Following these principles and with efficiency in mind, we im-
plemented a rKKA using a modified DDCS, D.(6, E), calculated as;

D.(6, E) = D(8, E) — DFLF (6, E) @

Where, DFLF (6, E) is the DDCS corresponding to the bulk semi-
classical term SFLF. Using this method, the correction can be calculated
using a single numerical integration of the DDCS, which is desirable
since this computation is costly.

These are the main ingredients for our rKKA implementation, and
even in this basic form, the results are quite good, but not excellent.
Fig. 1a shows the CDF retrieved after applying rKKA (dashed lines). The
correspondence between these results and the original er; is already
much better than for the conventional KKA, reproducing the dielectric
response down to the optical regime. Additionally, since the estimated
S. contains all relativistic contributions, it can be applied to the input
spectrum to reveal S, This procedure is depicted in Fig. 1b, with the
resulting spectra (dashed lines) showing good agreement with the
theoretical J(—1/er).

However, the retrieved dielectric functions contain some ripples,
obviously artefacts not observed in the original e;; models and the
input S(E) spectra. Examining these spectra, it is clear that related er-
rors have a more significant contribution near the band gap onset and at
around 15 eV. Cerenkov and surface losses respectively impact these
two regions, and the results indicate that the appearance of these rip-
ples can be related to the incomplete suppression of these spurious
contributions.

The origin of these issues, the effects of which can be observed in
other similar works [23], is two-fold. Either the numerical integration is
not completely reliable; or the initial guess of the CDF is too far from
the ground truth; in this case, the original dielectric function. Gross
errors are indeed apparent in the correction terms in the form of intense
peaks that in turn produce negative intensity in some regions of the
spectrum and high-frequency noise that can ultimately preclude the
convergence of the algorithm.

In order to investigate and propose solutions to these issues, we
analyze low-loss EELS synthetic data using our own rKKA algorithm
that has been generated using also our own EELS simulation procedure.
The computing time is also considered as hyperspectral acquisition
methods are widespread and we can utilize this large amount of in-
formation to our advantage (see Section 3.3). Our aim is to be able to
treat batches with many spectra at once, consequently efficient DDCS
integration using several methods and parallel computation are in-
vestigated.

For this purpose, we use er; models, with band gap energies be-
tween 1 and 6 eV, to calculate semi-classical and relativistic DDCS log-
meshes. The parameters of the simulation are fixed to Ey,= 300keV,
t = 10—250nm and 6,,,x=10mrad. Numerical integration of the log-
meshes is optimized for speed and reliability, from 6, = 0.1-—1prad,
and an angular mesh size Np = 256 — 512. Poisson noise is added to the
spectra used as input to the rKKA algorithm, to investigate also the
effects of counting statistics. In this sense, simple tests indicate that to
make the signal-to-noise (SNR) ratio drop appreciable for the spectra
with low number of counts, a zero-loss intenstity of I, = 1-10° e~ is
sufficient.

The rKKA algorithm is initialized using these spectra containing all
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relativistic contributions. The normalization is performed using the
thickness as a known parameter (refractive index normalization is also
possible, but not used here). The rKKA loop runs until either con-
vergence or a maximum of 20 iterations are reached. Convergence is
indicated by the variation between iterations of the estimated re-
lativistic ~ correction, measured using a  weighted test,
x%(Ssi, Ssi—1) < 5-107*. The retrieved CDF and estimated ELF con-
tributions can then be compared with the known ground truth coun-
terparts; the original dielectric function and semi-classical spectrum.

3. Results
3.1. Optimization of the relativistic DDCS integration

We take into account several numerical integration methods (see
Fig. 2a), running benchmark tests against the semi-classic dielectric
model to test their reliability. Additionally, computational cost tests
where performed measuring the average time spent in the calculation of
a relativistic spectrum for datasets with sizes between 8 and 64 spectra
(solid lines). In all cases, parallel processing was used on a workstation
with 8 CPUs and 32 Gb of RAM.

The considered methods include Gaussian quadrature/cubature,
Simpson rule and a log-sum-exp (LSE) trick integration. Gaussian
quadrature integration is perhaps the most popular solution, already
implemented in a freely available Matlab low-loss EELS simulation
package [9]. Inspired on this solution, we have implemented a faster,
multidimensional version using the freely available cubature Python
wrapper [30-32]. The Simpson-rule method is based on the well-known
numerical integration formula, generalized for irregularly-spaced data
meshes. This method is implemented using the routine already avail-
able in the Hyperspy toolbox [24]. Finally, LSE trick is the more
straightforward solution of summing the values in the log-mesh through
the scattering angle dimension and performing the appropriate change
of variables. This method is easily implemented based on the LSE
routine available in the scipy package [33].

Our tests indicate that the Simpson-rule method gives a good bal-
ance between speed and reliability. It produces an optimum estimate
and is the less time-consuming for medium size datasets, scoring be-
tween 0.25-0.14 s/spectrum for dataset sizes 4-64 spectra. In both this
method and the LSE trick, and for larger datasets, the calculations
benefit from cached operations meaning that the speed per spectrum
increases. The LSE method is the less time-consuming method for larger
datasets (below 0.13s/spectrum), however, even if over/under-flow
errors are taken into account it proves to be the less reliable. The errors
are however small, and thus difficult to appreciate in Fig. 2a.

Finally, the cubature/quadrature methods are reliable but also more
demanding, additionally requiring interpolation of the data prior to
numerical integration. They are the most time-consuming, scoring 2 s/
spectrum over all test sizes for the more efficient cubature method.
Thus the cubature integration is not practical for performing fast batch
calculations with many spectra. It is however useful to run tests when
the DDCS angular mesh is being optimized.

The final version of our algorithm incorporates all the three featured
methods, apart from the slower quadrature method (included for legacy
reasons). Furthermore, routines for the prediction of the angular spread
of radiative and non-radiative bulk inelastic scattering have also been
incorporated. These are useful for the optimization of the DDCS log-
meshes, and have been used together with the efficient Simpson-rule
integration method for all the remaining calculations presented. For the
results in this paper, log-meshes with 256 values and a 6, = lprad
were considered. Using this optimized integration scheme, the simula-
tion and rKKA processing of hyperspectral datasets with a few hundred
spectra in a matter of minutes is possible.
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3.2. Relativistic KKA of single spectra

In our preliminary results using a naive rKKA implementation (see
Fig. 1), we observe rippling errors associated with the incomplete
suppression of spurious contributions. Our investigation shows that
these issues have a greater impact when surface-loss and Cerenkov-loss
terms are relatively intense. Considering also the spectra in Fig. 2a, we
observe that for the same thickness the impact of these contributions is
greater when the e7;, model with lower band gap energy is employed.
The reason is that this model puts a greater oscillator strength into the
absorption spectra, and consequently the spectral features are more
pronounced. The physical equivalent would be a material that has a
larger refractive index, for which the impact of radiative loss is natu-
rally more important [28].

Ultimately, our implementation of the rKKA uses regularization of
the correction term S, by bounding and smoothing to improve the re-
liability of the iterative solutions. In this sense; bounding means that at
each iteration the correction values at a given energy S.(E’) are limited
to a fixed percentage of the total intensity,

spound () = {SC(E'L S:(B) < S(Ebxa

S.(E")bgga, otherwise 8
where bgga € (0, 1) controls the bounding limits; e.g. bgxa = 1 means
that the correction can be exactly equal to the input signal but not
greater. Following this procedure, the correction is smoothed using a
Gaussian filter

SEUS(E) = SG (regen) ©

where the right-hand side denotes convolution with a Gaussian kernel,
G, with an energy broadening parameter yxg4 the value of which can be
a few tens of eV.

This approach is equivalent to imposing previous knowledge about
the intensity and shape of the correction term. In this sense, a bgxa < 1
ensures that the intensity of S, never surpasses the original S, in-
troducing regions of negative spectral intensity in the input to the next
iteration. Additionally, a moderate smoothing avoids the introduction
of high-frequency oscillations which are not suppressed by the iterative
reconstruction while preserving the relevant features of S..

The regularization procedures ensure that the calculated corrections
converge and eliminates ripples in most cases. More precisely, for all
the spectra that were simulated for specimen thicknesses above
40-50nm the SFXF(E) recovered by our rKKA are in excellent agree-
ment with the original TL-DF and expected correction terms.

Fig. 4 showcases the correction results obtained using rKKA for
thicknesses of 50 and 100 nm. These corrections are allowed to be al-
most as large as the input spectra by bggs = 0.99, and high-frequency
oscillatory components above y;,=0.2eV are dampened. Examination
of the spectra obtained after the application of these correction terms
(dashed lines) confirms that the rippling features are largely removed.

On one hand, bulk effects (Cerenkov) can be robustly estimated
using rKKA even when they are the main relativistic contribution to
EELS, in thicker samples. Only the result obtained for 1eV band gap
energy and 50nm thickness diverge noticeably from the expected bulk
semi-classic contribution in the band gap energy onset region. In con-
trast, these issues are not affecting the result for t=100nm, although the
intensity of Cerenkov-loss increases with thickness. The reason for this
discrepancy has been identified to be the worse counting statistics for a
thinner sample, a problem which is exacerbated in our synthetic data-
sets by the addition of Poisson noise.

On the other hand, surface effects represent the main source of ar-
tifacts in the solution. For relatively thin samples, gross errors are in-
troduced that may be attenuated by bounding and smoothing, but can
not be completely corrected using only the presented regularization
methodology. It can be observed that these artefacts increase as the
simulated thickness decreases (see Fig. 5, red lines). We determine that



A. Eljarrat and C.T. Koch

(a)

3(=1/em) -
— S(E)

rKKA, smooth

-
“_,A/"

lad -~
TSI, PEPRN el

EELS intensity [a.u.]

2 4 6 8 10 12 14
Energy-loss [eV]

Fig. 4. For the same three e¢7;, models presented in Fig. 1, panel (a) and (b)
present regularized rKKA results for t = 50 and 100 nm, respectively.

3I(=1/er)  weeee rkKKA, smooth
|
— S(E) ==+ rKKA, w/ avg. "J
t=50 nm 2
o
-N"A'ﬂ‘.f‘

Py v
R T T PO L PP L

2| t=40 4
5 = nm Lo
S, P4
.*;‘ ,p'&-"-'
n 5 7 -
GC) 10 NAP NN s g A p I AN
)
£
w0
[ t=30 nm s
L . a7’
L " e l\ e
Mt
-~ ~ Y
O TR ORI Y T Iv v«nnv-«ﬁ‘\‘!’-”"’ e
t=20 nm A
. %
- P P2
: l:\,.\ v
v
A
o LSS X NS .;...Tf‘. \.v»\lﬁla’él‘l’r it} "fl' :
2 4 6 8 10 12 14

Energy-loss [eV]

Fig. 5. For the same e7; models with E, = 1 eV presented in Fig. 1, this figure
presents regularized and average rKKA results for several thickness values, with
red and blue dashed lines, respectively. Details of the simulation and analysis
parameters are found in the text. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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the origin of these issues is not the noise-response of the correction
calculation, but the inadequacy of the initial guess for the CDF; see
steps 2 and 3 in Fig. 3. In this sense, thinner regions have a larger
relative contribution of surface losses. To eliminate the errors, it is
important to improve the initial guess of the CDF, prior to the estima-
tion of S.. In the following section, we devise a methodology to do so,
incorporating the information from hyperspectral datasets.

As a final note on the choice of bounding and smoothing para-
meters; we have noticed that the values described above work well in
most cases. In an actual experiment, the smoothing can be adjusted
depending on the energy resolution and/or point-spread function of the
set-up. In case of doubt, preliminary rounds of a few iterations can be
used to adjust these parameters. It is important to take into account that
the choice if this parameters may affect the number of iterations em-
ployed to reach convergence can change. In extreme cases, bounding
and smoothing the correction implies that the recovered may not con-
verge to the original SSD; for instance in cases where the correction is
above the selected percentage of the signal or the smoothing is so large
that it removes relevant features from the correction.

3.3. Relativistic KKA of an EELS-SL

Hyperspectral acquisition modes, in which maps containing many
spectra from areas of equal composition are acquired and analysed, is
very common practice. For isotropic media, we can make the assump-
tion that the only difference between spectra acquired from the same
material region is the material thickness transversed by the electron
beam. In this case, the dielectric properties causing the EELS are the
same for each spectrum and can thus be described by a single e(E)
function. We have replicated this situation in our simulations, gen-
erating a synthetic dataset equivalent to a hyperspectral line profile,
commonly known as EELS spectrum-lines (SL). In this EELS-SL a linear
thickness gradient exists between the spectra, and they are affected
differently by spurious contributions; see Fig. 5, solid black lines.

Under the above assumption, it is therefore natural to use the same
guess for the CDF to model each individual spectrum in our synthetic
EELS-SL and calculate S.. When this is done, the S and S, in the EELS-SL
are still different from one another, since they are calculated for their
corresponding thickness. Considering this special case, we implement in
our rKKA the possibility to average the CDF obtained for each spectrum
in a hyperspectral dataset, ¢, after application of the Kramers—Kronig
transforms, to produce an average estimate,

1 &
£™8(E) = ~ Z e (E)
P p=0 (10)

where p is an index for the spectra in the hyperspectral dataset, running
from 0 to N, Note that in our implementation, ¢ is only used for the
calculation of S; the single ¢/ corresponding to each point spectrum are
stored and returned as a result after convergence or the last iteration
are reached.

Fig. 5 depicts the results of this procedure when processing an EELS-
SL with 21 spectra and a linear thickness gradient from 20 to 120nm. In
this profile, the suppression of spurious contributions is good, and the
corrected spectra are in excellent agreement with the expected bulk
semi-classical contributions. Moreover, these average rKKA results and
the results from single spectrum processing can be compared (see blue
dashed and red dotted lines). The average rKKA produces a clearly more
reliable reconstruction of the bulk semi-classical term. Most of the
Cerenkov-loss signal at the band gap energy onset is correctly modelled
and can be subtracted. Meanwhile, the strong rippling at around 15eV
introduced by surface contributions disappears completely.

This average rKKA reconstruction is useful as long as it incorporates
information from different single rKKA through the dataset in an ad-
vantageous way. It is possible to quantitatively assess the quality of the
presented rKKA reconstructions, since the expected results are known
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Fig. 6. From top to bottom, SNR measured using Eq. 11 for the rKKA re-
constructions of the three ey, models in Fig. 1, in dashed lines. The rKKA is
performed with the naive, regularized and average implementations; as in-
dicated by green, red and blue colors, respectively. The SNR corresponding to
the noisy spectra compared to the noise-less case is also included, in solid black
lines. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

beforehand. We perform this assessment on a logarithmic scale, using
the following definition of SNR,

S ISPFIdE ]

SNR = 10log,o| "
gw[ S 1s=S, — Sf*IdE

(1)

where, in the ratio, the denominator contains the integral of the ex-
pected semi-classical bulk contribution and the numerator contains the
integral of the error for the obtained reconstruction of this contribution.
Note that in this process the SNR of a spectrum is indicated by a single
value, in dB. Figure 6 presents such assessment, where the expected and
obtained bulk semi-classical contribution are compared for three dif-
ferent panels and through the whole EELS-SL (dashed lines). In the
same figure, the quality of the noisy input S(E) is measured by com-
paring to the noise-less signal (solid lines). Since the quality of the input
spectra is dominated by Poisson distributed noise, a linear decay is
expected for SNR measured on a logarithmic scale.

Since our simulations are performed with fixed beam intensity and
thicker specimens scatter strongly, an increase in the signal quality with
thickness is expected. Indeed, the thickness dependence of the SNR for
the noisy input signal is linear, showing a larger SNR than the re-
constructions. The single rKKA reconstructions show a slight overall
improvement when regularization is used, as rippling features are
suppressed or attenuated. The average rKKA shows great improvement
in the thinner region, especially for the lower band gap energy cases. In
those cases, we have seen that the averaged results completely remove
the spurious features caused by inadequacies in the CDF guesses. Also
for the average rKKA at the lowest band gap (Eg = 1 eV), the quality
drops slightly in the thicker regions. Probably, the origin of this drop
are strong features in thin regions not completely eliminated by the
averaging.

We also explore the effect of using a shorter EELS-SL, that contains
less spectra in the thicker regions by applying the average rKKA
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algorithm to two datasets; the first one, labeled A is a short EELS-SL
with 21 spectra from 20 to 50nm (red dotted lines); dataset B, already
presented above, has 21 spectra from 20 to 120nm (blue dashed lines).

Fig. 7 summarizes results obtained by this procedure at the 50nm
thickness, which is the largest in dataset A. Again for the smaller band
gap energy, the rippling features of the thinner regions have been in-
troduced into the result for this thickness. The amount of spectra in this
shorter EELS-SL in the thicker region is not sufficient to compensate for
the errors introduced in the thinner regions.

Nevertheless, comparison of Figs. 1,4 and 5 shows that average
rKKA results in all other cases are better than single rKKA results.
Averaging adds to the robustness of the algorithm, given that a suffi-
cient number of spectra are acquired from regions not critically im-
pacted by spurious contributions (thinner or thicker).

3.4. Application to experimental data

We have also applied the rKKA algorithm to experimental EELS data
of AIN, obtained from the EELS database open repository [34]. Fig. 8
includes the results from this procedure, showing the step-by-step
treatment of EELS data to obtain the dielectric function. Panel (a)
presents the treatment of the spectra prior to the application of the
algorithm, including the careful deconvolution of the zero-loss peak
(ZLP) and plural scattering. The ZLP model is obtained from the EELS
data and a modified Voigt function to extend the part of the tail below
the inelastic spectrum. In order to use the resulting SSD (dashed line) as
an input for KKA, the high energy tail of the spectrum is extended
smoothly to zero intensity using a power law [11]. Care was taken
when applying these procedures to avoid artifacts. The examination of
the resulting SSD (dashed line) shows that plural scattering is sup-
pressed without modification of the main volume plasmon. The treat-
ment allowed for the asymmetry of the ZLP tails which is a known
feature of spectra acquired using a field-emission gun (FEG) [35,36].

Since this spectrum was acquired using a 200 kV high-tension beam,
the resulting SSD contains a strong contribution of relativistic electrons
affecting the band gap region ( ~ 6.3 eV, for AIN). Fig. 8 (b) shows the
removal of the relativistic contribution calculated using rKKA. For this
calculation the smoothing parameter was set to 1 eV, corresponding to
the observed ZLP width. The rKKA loop ran until y? < 10™* con-
vergence was reached. The resulting ELF spectrum (dashed line) has its
intensity onset at ~ 6.3 eV, in good agreement with the expected value
for the AIN band gap and measurements by other authors [37]. Our
ability to determine the precision of this observation is limited by the
coarse energy-loss sampling of this spectrum (0.1 eV), but it is pre-
sumably not smaller than 0.8 eV since a Schottky-FEG source was
employed. The measurement can be improved by employing a mono-
chromated source, finer energy-loss sampling and possibly a larger
detector.

Fig. 8 (c) shows that the agreement of the dielectric function ob-
tained using rKKA also improves, if we compare with theoretical results
from DFT calculations. In this figure, the imaginary part of the di-
electric function is shown, which shows band-structure transitions re-
lated with the optical oscillator strength. In the case of the experimental
EELS results, spectral broadening and the presence of collective ex-
citation (bulk plasmon), could explain the different peaks and slightly
more intense high-energy tail observed, respectively. Nevertheless, the
overall agreement for the rKKA result and DFT simulation is excellent.

4. Conclusion

In the case that a relativistic contribution to EELS cannot be dis-
regarded traditional KKA does not guarantee retrieving the correct CDF,
even from perfect noise-less input data. In turn, rKKA allows to retrieve
the correct CDF and a meaningful correction term, even in a relatively
naive implementation. However, in order to use low-loss EELS for
standard-free measurement of the dielectric properties of a material,
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the speed and reliability of the rKKA present challenging issues. In this
paper, we have explored and proposed solutions to these issues.

The time-consuming and error prone computation of relativistic
spectra is one of the main issues. According to our calculations, an
optimized numerical integration scheme using the Simpson-rule im-
proves the speed of the DDCS integration by one order of magnitude.
This feat additionally allows batch processing of hyperspectral datasets,

which becomes relevant when analyzing noisy experimental data.

The results from the naive implementation of rKKA are plagued by
artifacts, related to the inaccuracy of the initial guess for the CDF and
the noise-response of the DDCS integration. When treated using simple
regularization by bounding and smoothing, we have shown, that these
errors can be suppressed or at least severely attenuated. This metho-
dology makes rKKA more robust in the majority of cases. However, in
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very thin samples regularization by itself is insufficient, and some errors
always remain. We have proposed to use batch analysis of hyperspectral
datasets, showing how averaging of the CDF improves the performance
of rKKA. This improvement is confirmed using SNR measurements as a
validation figure. We foresee that this simple averaging trick could be
improved in the future by thickness-dependent weighting of the in-
formation from different energy-loss regions.

The present study broadens the application range of KKA to situa-
tions in which relativistic and surface losses have larger impact in the
spectra than ever before. Some limitations of the technique remain, the
application of KKA to very thin or thick specimens still remains pro-
blematic because of the inadequacy of the normalization procedure and
the effect of beam broadening.
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